
django-gdpr-assist Documentation
Release 1.4.2

Wildfish

Apr 28, 2022





Contents:

1 Installation 3
1.1 Django settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Usage 5
2.1 Configure your models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 The PrivacyMeta object 7
3.1 Registering automatically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Registering manually . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Anonymising objects 13
4.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 How anonymisation works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Anonymising related objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Commands 17
5.1 Re-running deletions and anonymisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Anonymising all personal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 The admin site 19
6.1 Bulk anonymisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 Personal data tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7 Upgrading 21
7.1 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.2 Changelog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

8 Contributing 25
8.1 Installing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.3 Code overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.4 Known limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.5 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

i



ii



django-gdpr-assist Documentation, Release 1.4.2

Tools to help manage user data in the age of GDPR:

• Find, export and anonymise personal data to comply with GDPR requests

• Track anonymisation and deletion of personal data to replay after restoring backups

• Anonymise all models to sanitise working copies of a production database

Contents: 1



django-gdpr-assist Documentation, Release 1.4.2

2 Contents:



CHAPTER 1

Installation

Install with:

pip install django-gdpr-assist

Add to your project’s settings.py:

# Add the app
INSTALLED_APPS = (

...
'gdpr_assist',
...

)

# Add a new database to log GDPR actions
DATABASES = {

...
'gdpr_log': {

'ENGINE': 'django.db.backends.sqlite3',
'NAME': os.path.join(BASE_DIR, 'gdpr-log.sqlite3'),

},
}
DATABASE_ROUTERS = ['gdpr_assist.routers.EventLogRouter']

You’ll then need to migrate the new database:

./manage.py migrate --database=gdpr_log

1.1 Django settings

In addition to the required changes to your settings listed above, there are additional optional settings which you can
define to override default behaviour:

3



django-gdpr-assist Documentation, Release 1.4.2

1.1.1 GDPR_PRIVACY_CLASS_NAME = 'PrivacyMeta'

This allows you to override the default name of the privacy meta class on models.

1.1.2 GDPR_PRIVACY_INSTANCE_NAME = '_privacy_meta'

This allows you to override the default name of the instantiated privacy meta class on models.

1.1.3 GDPR_LOG_DATABASE_NAME = 'gdpr_log'

The internal name of the log database. You’ll need to use this in the DATABASES settings, and when migrating.

1.1.4 GDPR_CAN_ANONYMISE_DATABASE = False

Set this to True to enable the anonymise_db management command. You will want this to be False on your
production deployment.

1.1.5 GDPR_LOG_ON_ANONYMISE = True

Set this to False to disable entries being created on the fly in the logging database (see
GDPR_LOG_DATABASE_NAME) during anonymisation, this may be useful for large initial anonyimisation
tasks.

By default log entries are created when a instance is anonymised and in bulk when calling the anonymise_db
command.

If you set this to False you can manually create logging for any instance you have anonymised later via instance.
_log_gdpr_anonymise(), handling post_anonymise signal or processing over PrivacyAnonymised as
required i.e a celery queue or cronjob.

1.1.6 SILENCED_SYSTEM_CHECKS

By default, gdpr-assist performs migration checks to ensure that you’ve followed the upgrade instructions correctly to
avoid accidental data loss.

See Upgrading for more details of the specific checks.

They may cause a slight performance hit to management command which run checks, so while we recommend you
leave them on while upgrading, once the upgrade has been completed and succesfully deployed the checks can safely
be disabled afterwards by adding them to Django’s SILENCED_SYSTEMS_CHECKS setting:

SILENCED_SYSTEM_CHECKS = [
"gdpr_assist.E001",

]

4 Chapter 1. Installation

https://docs.djangoproject.com/en/3.0/ref/settings/#silenced-system-checks


CHAPTER 2

Usage

2.1 Configure your models

Define privacy settings in a PrivacyMeta class on your model:

class MyModel(models.Model):
user = models.ForeignKey(

settings.AUTH_USER_MODEL,
blank=True,
null=True,
on_delete=gdpr_assist.ANONYMISE(models.SET_NULL),

)
display_name = models.CharField(max_length=255)
private_data = models.IntegerField()
public_data = models.TextField()

class PrivacyMeta:
fields = ['display_name', 'private_data']

def anonymise_private_data(self, instance):
return 0

def search(self, value):
return self.model.objects.filter(display_name__icontains=value)

Next:

• See Privacy Meta for the full set of PrivacyMeta options, and for how to register a third-party model.

• See Anonymising for how anonymisation works.

• See Admin to register your model in the admin site, and how to use the admin personal data tool to search and
export data.

5



django-gdpr-assist Documentation, Release 1.4.2

6 Chapter 2. Usage



CHAPTER 3

The PrivacyMeta object

A model needs to be registered with gdpr-assist in order to use any of the anonymisation or export functionality.

The PrivacyMeta object tells gdpr-assist which fields are private, and what to do with them.

3.1 Registering automatically

If you define a class called PrivacyMeta within your model, gdpr-assist will automatically detect and register your
model.

An instance of your PrivacyMeta class will then be available on the attribute _privacy_meta, the same way a
standard Meta class works.

For example:

class Comment(models.Model):
name = models.CharField(max_length=255, blank=True)
age = models.IntegerField(null=True, blank=True)
message = models.TextField()

class PrivacyMeta:
fields = ['name', 'age']

# The following statements are true:
assert(not hasattr(Comment, 'PrivacyMeta')
assert(hasattr(Comment, '_privacy_meta')
assert(Comment._privacy_meta.fields == ['name', 'age']

3.2 Registering manually

Sometimes you will want to define your PrivacyMeta class somewhere other than on the model - for example when
you want to be able to export or anonymise a third-party object, or if you have a particularly complex privacy meta

7



django-gdpr-assist Documentation, Release 1.4.2

definition and want to store it in a separate file for clarity.

The gdpr_assist.register(<ModelClass>, [<PrivacyMetaClass>]) function will let you manu-
ally register the model with an optional PrivacyMeta class.

For example:

from django.contrib.auth.models import User

class UserPrivacyMeta:
fields = ['first_name', 'last_name', 'email']

gdpr_assist.register(User, UserPrivacyMeta, gdpr_default_manager_name="objects_
→˓anonymised")

If you omit the privacy meta class, one will be generated for you with the default attributes.

Note that gdpr_default_manager_name is optional and by default objects will be cast to a PrivacyManager,
except in the case of Models in which their manager users use_in_migrations, as the User example above does. In
these cases a alternate name must be provided and user for queryset anonymisation in order not to create migrations
for third parties. Model.anonymisable_manager() can also be used to access the PrivacyManager regardless
of gdpr_default_manager_name.

3.3 Attributes

The PrivacyMeta object can have the following attributes:

3.3.1 can_anonymise = Boolean

default: True

Whether or not gdpr-assist is used to anonymise the data for this model, if False, you can still search and export
using gdpr-assist.

3.3.2 fields = [...]

List of the names of fields which contain personal information.

These will be the ones which are anonymised; other fields will be unmodified.

Example:

class MyModel(models.Model):
name = models.CharField(max_length=255)

class PrivacyMeta:
fields = ['name']

3.3.3 anonymise_<field_name>(self, instance)

Custom function to anonymise the named field, for when the standard anonymisers won’t produce the desired result.
This should also be used for custom field types.

Field name must appear in the fields list.

8 Chapter 3. The PrivacyMeta object



django-gdpr-assist Documentation, Release 1.4.2

It should not return a value; instead it should operate directly on the instance.

Example:

class MyModel(models.Model):
name = models.CharField(max_length=255)

class PrivacyMeta:
def anonymise_name(self, instance):

instance.name = 'Anon'

3.3.4 search_fields = [...]

List of fields to examine when searching for a value in the personal data tool in the admin site.

These field names will be used to build case-insensitive exact matches unless the field name contains a double under-
score, __. For example:

• name will create a filter of name__iexact=term

• name__icontains will create a filter of name__icontains=term

• person__name will create a filter of person__name=term

Example:

class MyModel(models.Model):
name = models.CharField(max_length=255)

class PrivacyMeta:
search_fields = ['name__icontains']

3.3.5 qs = search(self, value)

Function called by the personal data tool in the admin site, to search the model for the value.

The argument self will be a reference to the PrivacyMeta instance.

The default function will use search_fields, but this can be overridden to perform a custom search.

Should return a queryset (or iterable of objects).

Example:

class MyModel(models.Model):
name = models.CharField(max_length=255)

class PrivacyMeta:
def search(self, value):

return self.model.objects.filter(name=value.lower())

3.3.6 export_fields = [...]

List of fields to export. By default will export all fields.

Example:

3.3. Attributes 9



django-gdpr-assist Documentation, Release 1.4.2

class MyModel(models.Model):
name = models.CharField(max_length=255)

class PrivacyMeta:
export_fields = ['name']

3.3.7 export_exclude = [...]

List of fields to not export. By default will exclude foreign keys and many to many fields.

If a field is specified in both export_fields and export_exclude, it will be excluded.

Example:

class MyModel(models.Model):
name = models.CharField(max_length=255)
post_count = models.IntegerField(default=0)

class PrivacyMeta:
export_exclude = ['post_count']

3.3.8 export_filename = None

The filename to use for this model when exporting records from it. This should include the .csv extension, eg
export_filename = 'user_records.csv'

If not set, it will default to <app_name>.<object_name>.csv, eg my_app.MyModel.csv

Example:

class MyModel(models.Model):
name = models.CharField(max_length=255)

class PrivacyMeta:
export_filename = 'my_model.csv'

3.3.9 data = export(self, instance)

Function called by the personal data tool in the admin site, to export a model instance.

By default will export all fields specified in export_fields and not excluded by export_exclude. They will
all be cast to a string.

The default exporter cannot export foreign keys or many to many fields.

Should return a dict.

Example:

class MyModel(models.Model):
name = models.CharField(max_length=255)

class PrivacyMeta:
def export(self, instance):

return {

(continues on next page)

10 Chapter 3. The PrivacyMeta object



django-gdpr-assist Documentation, Release 1.4.2

(continued from previous page)

'name': instance.name,
'lower': instance.lower(),

}

3.3. Attributes 11



django-gdpr-assist Documentation, Release 1.4.2

12 Chapter 3. The PrivacyMeta object



CHAPTER 4

Anonymising objects

4.1 Models

Call this to anonymise the private fields on the object.

4.1.1 obj.anonymise()

Once an object is anonymised a reference to that anonymisation will be recorded in PrivacyAnonymised.

4.1.2 obj.is_anonymised = BooleanField()

This is a boolean value stored in the database to register whether the object has been anonymised or not.

4.2 How anonymisation works

If a field is nullable, the value will be set to None (or in the case of blankable strings, '').

If a field is not nullable, the value will be set to a sensible default:

• Numbers will be set to 0

• Strings will be set to a string representation of the primary key field

• Booleans will be set to False (although BooleanField(null=True) will always be nullable)

• DateField and DateTimeField will be set to the current date and time

• TimeField will be set to 00:00

• DurationField will be set to timedelta(0)

• EmailField will be anonymised to {pk}@anon.example.com

13



django-gdpr-assist Documentation, Release 1.4.2

• URLField will be anonymised to {pk}@anon.example.com

• GenericIPAddressField will be set to 0.0.0.0

• UUIDField will be set to {00000000-0000-0000-0000-000000000000}

These default actions can be overridden by defining a custom anonymiser as anonymise_<field_name> method
on the PrivacyMeta class - see the PrivacyMeta documentation for more details.

Custom field types will also need a custom anonymiser to be defined.

Some fields cannot be anonymised unless they can be null, and trying to anonymise them without a custom anonymiser
will raise a gdpr_assist.AnonymiseError exception:

• File fields (FilePathField, FileField, ImageField)

• Relationships (OneToOneField, ForeignKey)

To ensure data integrity, trying to anonymise a ManyToManyField will always raise a gdpr_assist.
AnonymiseError, unless you are using a custom anonymiser for that field.

The anonymiser cannot anonymise the primary key.

4.3 Anonymising related objects

When anonymising an object, its related objects will not be anonymised automatically. This is to prevent unintentional
side-effects.

4.3.1 Using signals

To cascade an anonymisation to another model, use signals:

gdpr_assist.signals.pre_anonymise

Called before the object is anonymised. You will be passed the original object.

Example:

from gdpr_assist.signals import pre_anonymise

@receiver(pre_anonymise, sender=MyModel)
def anonymise_related(sender, instance, **kwargs):

instance.my_related_obj.anonymise()

gdpr_assist.signals.post_anonymise

Called after anonymisation of the object. You will be passed the anonymised object.

Example:

from gdpr_assist.signals import post_anonymise

@receiver(post_anonymise, sender=MyModel)
def anonymise_related(sender, instance, **kwargs):

instance.my_related_obj.anonymise()

14 Chapter 4. Anonymising objects



django-gdpr-assist Documentation, Release 1.4.2

4.3.2 When deleting an object

When an object is deleted, any objects related to the object as on_delete=gdpr_assist.ANONYMISE(..)
will be anonymised. This takes one argument - the type of on_delete to perform on the field itself; for example:

class MyModel(models.Model):
fk = models.ForeignKey(

TargetModel,
on_delete=gdpr_assist.ANONYMISE(models.SET_NULL),

)

ANONYMISE(..) cannot take CASCADE or PROTECTED as arguments.

Deleting querysets

gdpr-assist modifies the queryset of registered models so that a bulk deletion will anonymise any related objects which
use ANONYMISE(..).

Note on use_in_migrations usage. If the model registered’s objects manager sets
use_in_migrations=‘‘use_in_migrations = True‘‘ the default queryset (objects) will not be changed, it will
instead be available at the name set on register(. . . , gdpr_default_manager_name=”abc”) this is to allow for
registering of third party models which make use of use_in_migrations.

Note that Django does not send delete signals for bulk delete operations in other for situations, so to anonymise related
objects when a queryset is deleted, make sure the model being deleted is registered with gdpr-assist.

4.3. Anonymising related objects 15



django-gdpr-assist Documentation, Release 1.4.2

16 Chapter 4. Anonymising objects



CHAPTER 5

Commands

5.1 Re-running deletions and anonymisations

To re-run a set of deletions and anonymisations, make sure your log database is available, then run:

./manage.py gdpr_rerun

5.2 Anonymising all personal data

To anonymise all data in all models registered with gdpr-assist:

./manage.py anonymise_db

This will anonymise all data in the database,

This command can be useful when working on a stage or local copy of the live database. Because it is prob-
ably a bad idea to run this on a production database, you will need to enable this command with the setting
GDPR_CAN_ANONYMISE_DATABASE = True.

17



django-gdpr-assist Documentation, Release 1.4.2

18 Chapter 5. Commands



CHAPTER 6

The admin site

6.1 Bulk anonymisation

To add an “Anonymise” option to the actions list for a ModelAdmin, subclass gdpr_assist.admin.
ModelAdmin:

import gdpr_assist
class MyAdmin(gdpr_assist.admin.ModelAdmin):

...
admin.site.register(MyModel, MyAdmin)

6.2 Personal data tool

In the admin site, under GDPR, select Personal data. This is a tool which lets you find, export, delete and
anonymise personal data.

Submitting the search will call the PrivacyMeta.search() method on all models registered with gdpr-assist.

From there, records can be selected for export, anonymisation or deletion.

This tool is only available to superusers.

19



django-gdpr-assist Documentation, Release 1.4.2

20 Chapter 6. The admin site



CHAPTER 7

Upgrading

For an overview of what has changed between versions, see the Changelog.

7.1 Instructions

7.1.1 Upgrading from 1.1.0

Anonymisation flag

Version 1.2.0 changes the way the anonymisation flag is stored. Previously it was stored in an anonymised field
which gdpr-assist added to your models, but this caused problems when wanting to anonymise third party models.
This flag has now been moved to a new model in the gdpr-assist app, linked to your objects using a generic foreign
key.

If you migrate without following these instructions, you will lose information about which database objects have been
anonymised.

Migrating your data

You must write a data migration to move this data to run before you create a migration to remove the anonymised
field. There is a migration operator to help you:

1. Create empty migrations for your apps with existing anonymisable models:

./manage.py makemigrations myapp --empty

2. Add the operator using the following migration template:

from django.db.migrations import Migration
from gdpr_assist.upgrading import MigrateGdprAnonymised

(continues on next page)

21



django-gdpr-assist Documentation, Release 1.4.2

(continued from previous page)

class Migration(migrations.Migration):
dependencies = [

('myapp', '0012_migration'), # Added by makemigrations
('gdpr_assist', '0002_privacyanonymised'), # Keep this dependency

]
operations = [

MigrateGdprAnonymised('MyModelOne'), # Update this to your model
MigrateGdprAnonymised('MyModelSix'), # Repeat for all your GDPR models

]

3. Create migrations to remove the fields:

./manage.py makemigrations myapp

4. Repeat for any other apps with anonymisable models

5. Run all migrations

./manage.py migrate

./manage.py migrate –database=gdpr_log

System check gdpr_assist.E001

Version 1.2.0 onwards adds a system check to ensure you have followed the above instructions, to avoid accidental
data loss when upgrading. If your migration tries to remove the field before you have migrated data, you will see the
error message:

Removing anonymised field before its data is migrated

This is triggered when removing any field called anonymised before it has been migrated with the
MigrateGdprAnonymised operator.

In most cases you can fix this by following the instructions above.

If the anonymised field was not added by gdpr-assist, and you do not want to run MigrateGdprAnonymised,
you can tell the check to ignore the failing migration by adding gdpr_assist_safe = True to the migration
class; for example:

class Migration(migrations.Migration):
gdpr_assist_safe = True
dependencies = [...

Alternatively if you are happy that all your migrations are safe, you can add the check to
SILENCED_SYSTEM_CHECKS in your project settings to disable the migration check:

SILENCED_SYSTEM_CHECKS = [
"gdpr_assist.E001",

]

Changes to your code

In most cases no further action will be required, but if you are using the anonymised field in your own code, you will
need to call is_anonymised() or query the model gdpr_assist.models.PrivacyAnonymised instead.

22 Chapter 7. Upgrading



django-gdpr-assist Documentation, Release 1.4.2

7.2 Changelog

7.2.1 1.4.2, 2022-04-28

Fix admin styling issue on person search.

7.2.2 1.4.1, 2022-02-25

Fix migration issue caused in supporting 2.2/without default_auto_field. Thanks @mserrano07 @llexical.

7.2.3 1.4.0, 2022-01-19

Features:

• Add support for Django 3.2, 4.0.

• Updated example project.

• Improve performance of log database and added GDPR_LOG_ON_ANONYMISE option to disable logging.

Fix:

• Resolve issue 48, use_in_migrations. Managers with use_in_migrations=True will no longer be cast, instead a

duplicate is created using the name provided at register(. . . , gdpr_default_manager_name=”abc”). * Update Priva-
cyModel cast to support inheriting from another privacy model. * Performance improvements to for management
command thanks @jayaddison-collabora

7.2.4 1.3.0, 2020-08-14

Features:

• Add support for Django 3.0 and 3.1

Changes:

• Remove support for Django 2.1 and earlier

7.2.5 1.2.0, 2020-07-15

Features:

• Add support for Django 2.2

• Add can_anonymise flag to PrivacyMeta to support searching and exporting data which shouldn’t be
anonymised. (#15, #17)

• Add bulk anonymisation operations to improve efficiency of large anonymisations

Changes:

• Remove support for Django 1.8

Bugfixes:

• Fix support for third party models by removing the anonymised field (#5, #13)

• Fix duplicate migrations (#6, #12)

7.2. Changelog 23



django-gdpr-assist Documentation, Release 1.4.2

• Fix documentation for post_anonymise (#8, #14)

Internal:

• Code style updated to use black and isort

7.2.6 1.1.0, 2020-03-20

Bugfix:

• Allow managers with delete to have custom additional parameters.

Other:

• This version removes python 2.7 support.

7.2.7 1.0.1, 2018-10-23

Bugfix:

• Managers on registered models which set use_in_migrations can now be serialised for migrations.

7.2.8 1.0.0, 2018-09-16

Initial public release

24 Chapter 7. Upgrading



CHAPTER 8

Contributing

Contributions are welcome by pull request. Check the github issues and project roadmap to see what needs work.

8.1 Installing

The easiest way to work on GDPR-assist is to fork the project on github, then install it to a virtualenv:

virtualenv django-gdpr-assist
cd django-gdpr-assist
source bin/activate
pip install -e git+git@github.com:USERNAME/django-gdpr-assist.git#egg=django-gdpr-
→˓assist[dev]

(replacing USERNAME with your username).

This will install the development dependencies too, and you’ll find the source ready for you to work on in the src
folder of your virtualenv.

8.2 Testing

Contributions will be merged more quickly if they are provided with unit tests.

Use setup.py to run the python tests on your current python environment; you can optionally specify which test to
run:

python setup.py test [tests[.test_set.TestClass]]

Use tox to run them on one or more supported versions:

tox [-e py36-django1.11] [tests[.test_module.TestClass]]

25



django-gdpr-assist Documentation, Release 1.4.2

Tox will also generate a coverage HTML report.

You can also use detox to run the tests concurrently, although you will need to run tox -e report again after-
wards to generate the coverage report.

To use a different database (mysql, postgres etc) use the environment variables DATABASE_ENGINE,
DATABASE_NAME, DATABASE_USER, DATABASE_PASSWORD, DATABASE_HOST and DATABASE_PORT, eg:

DATABASE_ENGINE=pgsql DATABASE_NAME=gdpr_assist_test [...] tox

8.3 Code overview

The handlers.register_model handler watches for new model definitions which include a PrivacyMeta
attribute. These models are then registered automatically with the registry.registry.

Registration casts and instantiates the PrivacyMeta and stores it on the _privacy_meta attribute of the
model. It also changes the base class of the model to models.PrivacyModel, its manager to models.
PrivacyManager and its queryset to models.PrivacyQuerySet to add the necessary anonymisation at-
tributes and methods.

Note on use_in_migrations usage. If the model registered’s objects manager sets
use_in_migrations=‘‘use_in_migrations = True‘‘ objects is not cast, instead, gdpr_default_manager_name
must be used to give an alternate name.

Model.anonymisable_manager() can also be used to access the PrivacyManager regardless of
gdpr_default_manager_name.

Once all models are registered, apps.GdprAppConfig.ready looks at all registered models for a
OneToOneField or ForeignKeywhich have on_delete=ANONYMISE(..), and then logs the related models
with the registry so that handlers.handle_pre_delete knows to watch them.

When a registered object is deleted, its details are logged to models.EventLog, stored in a separate database.

Anonymisation starts with models.PrivacyModel.anonymise, which then calls the field-specific anonymise
functions in the PrivacyMeta instance; fields which do not have one defined use anonymiser.
anonymise_field.

8.4 Known limitations

• QuerySet bulk deletions on a model will not be detected unless it has a PrivacyMeta or is manually registered
with gdpr_assist.register

• Operations involving gdpr-assist may be slower than normal (ie bulk deletions) due to the additional processing
required.

8.5 Roadmap

Features planned for future releases:

• Settings to customise the anonymise() method name on registered models - see Anonymising objects

• Subclass the queryset of on_delete=ANONYMISE(..) related models which aren’t registered, so that bulk
deletion always results in anonymisation - see Anonymising objects

• Ability to change a relationship field on a registered third-party model to use on_delete=ANONYMISE(..)

26 Chapter 8. Contributing



django-gdpr-assist Documentation, Release 1.4.2

• A generic view to allow self-service data export, ready to be added to user-facing profile management.

• A generic view to allow self-service data removal, ready to be added to user-facing profile management.

This app does not currently attempt to provide any sort of framework for managing opt-in or consent, because in our
experience no two sites are similar enough for a generic solution.

8.5. Roadmap 27


	Installation
	Django settings

	Usage
	Configure your models

	The PrivacyMeta object
	Registering automatically
	Registering manually
	Attributes

	Anonymising objects
	Models
	How anonymisation works
	Anonymising related objects

	Commands
	Re-running deletions and anonymisations
	Anonymising all personal data

	The admin site
	Bulk anonymisation
	Personal data tool

	Upgrading
	Instructions
	Changelog

	Contributing
	Installing
	Testing
	Code overview
	Known limitations
	Roadmap


