

django-GDPR-assist

Tools to help manage user data in the age of GDPR:

	Find, export and anonymise personal data to comply with GDPR requests

	Track anonymisation and deletion of personal data to replay after restoring
backups

	Anonymise all models to sanitise working copies of a production database

Contents:

	Installation
	Django settings

	Usage
	Configure your models

	The PrivacyMeta object
	Registering automatically

	Registering manually

	Attributes

	Anonymising objects
	Models

	How anonymisation works

	Anonymising related objects

	Commands
	Re-running deletions and anonymisations

	Anonymising all personal data

	The admin site
	Bulk anonymisation

	Personal data tool

	Upgrading
	Instructions

	Changelog

	Contributing
	Installing

	Testing

	Code overview

	Known limitations

	Roadmap

Installation

Install with:

pip install django-gdpr-assist

Add to your project’s settings.py:

Add the app
INSTALLED_APPS = (
 ...
 'gdpr_assist',
 ...
)

Add a new database to log GDPR actions
DATABASES = {
 ...
 'gdpr_log': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': os.path.join(BASE_DIR, 'gdpr-log.sqlite3'),
 },
}
DATABASE_ROUTERS = ['gdpr_assist.routers.EventLogRouter']

You’ll then need to migrate the new database:

./manage.py migrate --database=gdpr_log

Django settings

In addition to the required changes to your settings listed above, there are
additional optional settings which you can define to override default
behaviour:

GDPR_PRIVACY_CLASS_NAME = 'PrivacyMeta'

This allows you to override the default name of the privacy meta class on
models.

GDPR_PRIVACY_INSTANCE_NAME = '_privacy_meta'

This allows you to override the default name of the instantiated privacy meta
class on models.

GDPR_LOG_DATABASE_NAME = 'gdpr_log'

The internal name of the log database. You’ll need to use this in the
DATABASES settings, and when migrating.

GDPR_CAN_ANONYMISE_DATABASE = False

Set this to True to enable the anonymise_db management command. You
will want this to be False on your production deployment.

GDPR_LOG_ON_ANONYMISE = True

Set this to False to disable entries being created on the fly in the logging
database (see GDPR_LOG_DATABASE_NAME) during anonymisation, this may be useful
for large initial anonyimisation tasks.

By default log entries are created when a instance is anonymised and in bulk when
calling the anonymise_db command.

If you set this to False you can manually create logging for any instance you
have anonymised later via instance._log_gdpr_anonymise(), handling
post_anonymise signal or processing over PrivacyAnonymised as required i.e
a celery queue or cronjob.

SILENCED_SYSTEM_CHECKS

By default, gdpr-assist performs migration checks to ensure that you’ve followed
the upgrade instructions correctly to avoid accidental data loss.

See Upgrading for more details of the specific checks.

They may cause a slight performance hit to management command which run checks, so while
we recommend you leave them on while upgrading, once the upgrade has been completed and
succesfully deployed the checks can safely be disabled afterwards by adding them to
Django’s SILENCED_SYSTEMS_CHECKS [https://docs.djangoproject.com/en/3.0/ref/settings/#silenced-system-checks] setting:

SILENCED_SYSTEM_CHECKS = [
 "gdpr_assist.E001",
]

Usage

Configure your models

Define privacy settings in a PrivacyMeta class on your model:

class MyModel(models.Model):
 user = models.ForeignKey(
 settings.AUTH_USER_MODEL,
 blank=True,
 null=True,
 on_delete=gdpr_assist.ANONYMISE(models.SET_NULL),
)
 display_name = models.CharField(max_length=255)
 private_data = models.IntegerField()
 public_data = models.TextField()

 class PrivacyMeta:
 fields = ['display_name', 'private_data']

 def anonymise_private_data(self, instance):
 return 0

 def search(self, value):
 return self.model.objects.filter(display_name__icontains=value)

Next:

	See Privacy Meta for the full set of PrivacyMeta
options, and for how to register a third-party model.

	See Anonymising for how anonymisation works.

	See Admin to register your model in the admin site, and how
to use the admin personal data tool to search and export data.

The PrivacyMeta object

A model needs to be registered with gdpr-assist in order to use any of the
anonymisation or export functionality.

The PrivacyMeta object tells gdpr-assist which fields are private, and what
to do with them.

Registering automatically

If you define a class called PrivacyMeta within your model, gdpr-assist
will automatically detect and register your model.

An instance of your PrivacyMeta class will then be available on the
attribute _privacy_meta, the same way a standard Meta class works.

For example:

class Comment(models.Model):
 name = models.CharField(max_length=255, blank=True)
 age = models.IntegerField(null=True, blank=True)
 message = models.TextField()

 class PrivacyMeta:
 fields = ['name', 'age']

The following statements are true:
assert(not hasattr(Comment, 'PrivacyMeta')
assert(hasattr(Comment, '_privacy_meta')
assert(Comment._privacy_meta.fields == ['name', 'age']

Registering manually

Sometimes you will want to define your PrivacyMeta class somewhere other
than on the model - for example when you want to be able to export or anonymise
a third-party object, or if you have a particularly complex privacy meta
definition and want to store it in a separate file for clarity.

The gdpr_assist.register(<ModelClass>, [<PrivacyMetaClass>]) function
will let you manually register the model with an optional PrivacyMeta
class.

For example:

from django.contrib.auth.models import User

class UserPrivacyMeta:
 fields = ['first_name', 'last_name', 'email']

gdpr_assist.register(User, UserPrivacyMeta, gdpr_default_manager_name="objects_anonymised")

If you omit the privacy meta class, one will be generated for you with the
default attributes.

Note that gdpr_default_manager_name is optional and by default objects will be cast to
a PrivacyManager, except in the case of Models in which their manager users use_in_migrations,
as the User example above does. In these cases a alternate name must be provided and user for
queryset anonymisation in order not to create migrations for third parties. Model.anonymisable_manager()
can also be used to access the PrivacyManager regardless of gdpr_default_manager_name.

Attributes

The PrivacyMeta object can have the following attributes:

can_anonymise = Boolean

default: True

Whether or not gdpr-assist is used to anonymise the data for this model, if False, you can
still search and export using gdpr-assist.

fields = [...]

List of the names of fields which contain personal information.

These will be the ones which are anonymised; other fields will be unmodified.

Example:

class MyModel(models.Model):
 name = models.CharField(max_length=255)

 class PrivacyMeta:
 fields = ['name']

anonymise_<field_name>(self, instance)

Custom function to anonymise the named field, for when the standard anonymisers
won’t produce the desired result. This should also be used for custom field
types.

Field name must appear in the fields list.

It should not return a value; instead it should operate directly on the
instance.

Example:

class MyModel(models.Model):
 name = models.CharField(max_length=255)

 class PrivacyMeta:
 def anonymise_name(self, instance):
 instance.name = 'Anon'

search_fields = [...]

List of fields to examine when searching for a value in the personal data tool
in the admin site.

These field names will be used to build case-insensitive exact matches unless
the field name contains a double underscore, __. For example:

	name will create a filter of name__iexact=term

	name__icontains will create a filter of name__icontains=term

	person__name will create a filter of person__name=term

Example:

class MyModel(models.Model):
 name = models.CharField(max_length=255)

 class PrivacyMeta:
 search_fields = ['name__icontains']

qs = search(self, value)

Function called by the personal data tool in the admin site, to search the
model for the value.

The argument self will be a reference to the PrivacyMeta instance.

The default function will use search_fields, but this can be overridden to
perform a custom search.

Should return a queryset (or iterable of objects).

Example:

class MyModel(models.Model):
 name = models.CharField(max_length=255)

 class PrivacyMeta:
 def search(self, value):
 return self.model.objects.filter(name=value.lower())

export_fields = [...]

List of fields to export. By default will export all fields.

Example:

class MyModel(models.Model):
 name = models.CharField(max_length=255)

 class PrivacyMeta:
 export_fields = ['name']

export_exclude = [...]

List of fields to not export. By default will exclude foreign keys and many to
many fields.

If a field is specified in both export_fields and export_exclude, it
will be excluded.

Example:

class MyModel(models.Model):
 name = models.CharField(max_length=255)
 post_count = models.IntegerField(default=0)

 class PrivacyMeta:
 export_exclude = ['post_count']

export_filename = None

The filename to use for this model when exporting records from it. This should
include the .csv extension, eg export_filename = 'user_records.csv'

If not set, it will default to <app_name>.<object_name>.csv, eg
my_app.MyModel.csv

Example:

class MyModel(models.Model):
 name = models.CharField(max_length=255)

 class PrivacyMeta:
 export_filename = 'my_model.csv'

data = export(self, instance)

Function called by the personal data tool in the admin site, to export a model
instance.

By default will export all fields specified in export_fields and not
excluded by export_exclude. They will all be cast to a string.

The default exporter cannot export foreign keys or many to many fields.

Should return a dict.

Example:

class MyModel(models.Model):
 name = models.CharField(max_length=255)

 class PrivacyMeta:
 def export(self, instance):
 return {
 'name': instance.name,
 'lower': instance.lower(),
 }

Anonymising objects

Models

Call this to anonymise the private fields on the object.

obj.anonymise()

Once an object is anonymised a reference to that anonymisation will be recorded in PrivacyAnonymised.

obj.is_anonymised = BooleanField()

This is a boolean value stored in the database to register whether the object
has been anonymised or not.

How anonymisation works

If a field is nullable, the value will be set to None (or in the case of
blankable strings, '').

If a field is not nullable, the value will be set to a sensible default:

	Numbers will be set to 0

	Strings will be set to a string representation of the primary key field

	Booleans will be set to False (although BooleanField(null=True) will always
be nullable)

	DateField and DateTimeField will be set to the current date and time

	TimeField will be set to 00:00

	DurationField will be set to timedelta(0)

	EmailField will be anonymised to {pk}@anon.example.com

	URLField will be anonymised to {pk}@anon.example.com

	GenericIPAddressField will be set to 0.0.0.0

	UUIDField will be set to {00000000-0000-0000-0000-000000000000}

These default actions can be overridden by defining a custom anonymiser as
anonymise_<field_name> method on the PrivacyMeta class - see the
PrivacyMeta documentation for more details.

Custom field types will also need a custom anonymiser to be defined.

Some fields cannot be anonymised unless they can be null, and trying to
anonymise them without a custom anonymiser will raise a
gdpr_assist.AnonymiseError exception:

	File fields (FilePathField, FileField, ImageField)

	Relationships (OneToOneField, ForeignKey)

To ensure data integrity, trying to anonymise a ManyToManyField will always
raise a gdpr_assist.AnonymiseError, unless you are using a custom
anonymiser for that field.

The anonymiser cannot anonymise the primary key.

Anonymising related objects

When anonymising an object, its related objects will not be anonymised
automatically. This is to prevent unintentional side-effects.

Using signals

To cascade an anonymisation to another model, use signals:

gdpr_assist.signals.pre_anonymise

Called before the object is anonymised. You will be passed the original object.

Example:

from gdpr_assist.signals import pre_anonymise

@receiver(pre_anonymise, sender=MyModel)
def anonymise_related(sender, instance, **kwargs):
 instance.my_related_obj.anonymise()

gdpr_assist.signals.post_anonymise

Called after anonymisation of the object. You will be passed the anonymised
object.

Example:

from gdpr_assist.signals import post_anonymise

@receiver(post_anonymise, sender=MyModel)
def anonymise_related(sender, instance, **kwargs):
 instance.my_related_obj.anonymise()

When deleting an object

When an object is deleted, any objects related to the object as
on_delete=gdpr_assist.ANONYMISE(..) will be anonymised. This takes
one argument - the type of on_delete to perform on the field itself; for
example:

class MyModel(models.Model):
 fk = models.ForeignKey(
 TargetModel,
 on_delete=gdpr_assist.ANONYMISE(models.SET_NULL),
)

ANONYMISE(..) cannot take CASCADE or PROTECTED as arguments.

Deleting querysets

gdpr-assist modifies the queryset of registered models so that a bulk deletion
will anonymise any related objects which use ANONYMISE(..).

Note on use_in_migrations usage. If the model registered’s objects
manager sets use_in_migrations=``use_in_migrations = True`` the default queryset (objects)
will not be changed, it will instead be available at the name set on register(…, gdpr_default_manager_name=”abc”)
this is to allow for registering of third party models which make use of use_in_migrations.

Note that Django does not send delete signals for bulk delete operations in
other for situations, so to anonymise related objects when a queryset is
deleted, make sure the model being deleted is registered with gdpr-assist.

Commands

Re-running deletions and anonymisations

To re-run a set of deletions and anonymisations, make sure your log database is
available, then run:

./manage.py gdpr_rerun

Anonymising all personal data

To anonymise all data in all models registered with gdpr-assist:

./manage.py anonymise_db

This will anonymise all data in the database,

This command can be useful when working on a stage or local copy of the live
database. Because it is probably a bad idea to run this on a production
database, you will need to enable this command with the setting
GDPR_CAN_ANONYMISE_DATABASE = True.

The admin site

Bulk anonymisation

To add an “Anonymise” option to the actions list for a ModelAdmin, subclass
gdpr_assist.admin.ModelAdmin:

import gdpr_assist
class MyAdmin(gdpr_assist.admin.ModelAdmin):
 ...
admin.site.register(MyModel, MyAdmin)

Personal data tool

In the admin site, under GDPR, select Personal data. This is a tool
which lets you find, export, delete and anonymise personal data.

Submitting the search will call the PrivacyMeta.search() method on all
models registered with gdpr-assist.

From there, records can be selected for export, anonymisation or deletion.

This tool is only available to superusers.

Upgrading

For an overview of what has changed between versions, see the Changelog.

Instructions

Upgrading from 1.1.0

Anonymisation flag

Version 1.2.0 changes the way the anonymisation flag is stored. Previously it was stored
in an anonymised field which gdpr-assist added to your models, but this caused
problems when wanting to anonymise third party models. This flag has now been moved to a
new model in the gdpr-assist app, linked to your objects using a generic foreign key.

If you migrate without following these instructions, you will lose information about
which database objects have been anonymised.

Migrating your data

You must write a data migration to move this data to run before you create a migration
to remove the anonymised field. There is a migration operator to help you:

	Create empty migrations for your apps with existing anonymisable models:

./manage.py makemigrations myapp --empty

	Add the operator using the following migration template:

from django.db.migrations import Migration
from gdpr_assist.upgrading import MigrateGdprAnonymised

class Migration(migrations.Migration):
 dependencies = [
 ('myapp', '0012_migration'), # Added by makemigrations
 ('gdpr_assist', '0002_privacyanonymised'), # Keep this dependency
]
 operations = [
 MigrateGdprAnonymised('MyModelOne'), # Update this to your model
 MigrateGdprAnonymised('MyModelSix'), # Repeat for all your GDPR models
]

	Create migrations to remove the fields:

./manage.py makemigrations myapp

	Repeat for any other apps with anonymisable models

	Run all migrations

./manage.py migrate

./manage.py migrate –database=gdpr_log

System check gdpr_assist.E001

Version 1.2.0 onwards adds a system check to ensure you have followed the above
instructions, to avoid accidental data loss when upgrading. If your migration tries to
remove the field before you have migrated data, you will see the error message:

Removing anonymised field before its data is migrated

This is triggered when removing any field called anonymised before it has been
migrated with the MigrateGdprAnonymised operator.

In most cases you can fix this by following the instructions above.

If the anonymised field was not added by gdpr-assist, and you do not want to run
MigrateGdprAnonymised, you can tell the check to ignore the failing migration by
adding gdpr_assist_safe = True to the migration class; for example:

class Migration(migrations.Migration):
 gdpr_assist_safe = True
 dependencies = [...

Alternatively if you are happy that all your migrations are safe, you can add the check
to SILENCED_SYSTEM_CHECKS in your project settings to disable the migration check:

SILENCED_SYSTEM_CHECKS = [
 "gdpr_assist.E001",
]

Changes to your code

In most cases no further action will be required, but if you are using the
anonymised field in your own code, you will need to call is_anonymised() or
query the model gdpr_assist.models.PrivacyAnonymised instead.

Changelog

1.4.2, 2022-04-28

Fix admin styling issue on person search.

1.4.1, 2022-02-25

Fix migration issue caused in supporting 2.2/without default_auto_field. Thanks @mserrano07 @llexical.

1.4.0, 2022-01-19

Features:

	Add support for Django 3.2, 4.0.

	Updated example project.

	Improve performance of log database and added GDPR_LOG_ON_ANONYMISE option to disable logging.

Fix:

	Resolve issue 48, use_in_migrations. Managers with use_in_migrations=True will no longer be cast, instead a

duplicate is created using the name provided at register(…, gdpr_default_manager_name=”abc”).
* Update PrivacyModel cast to support inheriting from another privacy model.
* Performance improvements to for management command thanks @jayaddison-collabora

1.3.0, 2020-08-14

Features:

	Add support for Django 3.0 and 3.1

Changes:

	Remove support for Django 2.1 and earlier

1.2.0, 2020-07-15

Features:

	Add support for Django 2.2

	Add can_anonymise flag to PrivacyMeta to support searching and exporting data
which shouldn’t be anonymised. (#15, #17)

	Add bulk anonymisation operations to improve efficiency of large anonymisations

Changes:

	Remove support for Django 1.8

Bugfixes:

	Fix support for third party models by removing the anonymised field (#5, #13)

	Fix duplicate migrations (#6, #12)

	Fix documentation for post_anonymise (#8, #14)

Internal:

	Code style updated to use black and isort

1.1.0, 2020-03-20

Bugfix:

	Allow managers with delete to have custom additional parameters.

Other:

	This version removes python 2.7 support.

1.0.1, 2018-10-23

Bugfix:

	Managers on registered models which set use_in_migrations can now be
serialised for migrations.

1.0.0, 2018-09-16

Initial public release

Contributing

Contributions are welcome by pull request. Check the github issues and project
roadmap to see what needs work.

Installing

The easiest way to work on GDPR-assist is to fork the project on github, then
install it to a virtualenv:

virtualenv django-gdpr-assist
cd django-gdpr-assist
source bin/activate
pip install -e git+git@github.com:USERNAME/django-gdpr-assist.git#egg=django-gdpr-assist[dev]

(replacing USERNAME with your username).

This will install the development dependencies too, and you’ll find the
source ready for you to work on in the src folder of your virtualenv.

Testing

Contributions will be merged more quickly if they are provided with unit tests.

Use setup.py to run the python tests on your current python environment;
you can optionally specify which test to run:

python setup.py test [tests[.test_set.TestClass]]

Use tox to run them on one or more supported versions:

tox [-e py36-django1.11] [tests[.test_module.TestClass]]

Tox will also generate a coverage HTML report.

You can also use detox to run the tests concurrently, although you will
need to run tox -e report again afterwards to generate the coverage report.

To use a different database (mysql, postgres etc) use the environment variables
DATABASE_ENGINE, DATABASE_NAME, DATABASE_USER,
DATABASE_PASSWORD, DATABASE_HOST and DATABASE_PORT, eg:

DATABASE_ENGINE=pgsql DATABASE_NAME=gdpr_assist_test [...] tox

Code overview

The handlers.register_model handler watches for new model definitions which
include a PrivacyMeta attribute. These models are then registered
automatically with the registry.registry.

Registration casts and instantiates the PrivacyMeta and stores it on the
_privacy_meta attribute of the model. It also changes the base class of the
model to models.PrivacyModel, its manager to models.PrivacyManager
and its queryset to models.PrivacyQuerySet to add the necessary
anonymisation attributes and methods.

Note on use_in_migrations usage. If the model registered’s objects
manager sets use_in_migrations=``use_in_migrations = True`` objects is not
cast, instead, gdpr_default_manager_name must be used to give an alternate name.

Model.anonymisable_manager() can also be used to access the PrivacyManager
regardless of gdpr_default_manager_name.

Once all models are registered, apps.GdprAppConfig.ready looks at all
registered models for a OneToOneField or ForeignKey which have
on_delete=ANONYMISE(..), and then logs the related models with the registry
so that handlers.handle_pre_delete knows to watch them.

When a registered object is deleted, its details are logged to
models.EventLog, stored in a separate database.

Anonymisation starts with models.PrivacyModel.anonymise, which then calls
the field-specific anonymise functions in the PrivacyMeta instance; fields
which do not have one defined use anonymiser.anonymise_field.

Known limitations

	QuerySet bulk deletions on a model will not be detected unless it has a
PrivacyMeta or is manually registered with gdpr_assist.register

	Operations involving gdpr-assist may be slower than normal (ie bulk
deletions) due to the additional processing required.

Roadmap

Features planned for future releases:

	Settings to customise the anonymise()
method name on registered models - see Anonymising objects

	Subclass the queryset of on_delete=ANONYMISE(..) related models which
aren’t registered, so that bulk deletion always results in anonymisation -
see Anonymising objects

	Ability to change a relationship field on a registered third-party model to
use on_delete=ANONYMISE(..)

	A generic view to allow self-service data export, ready to be added to
user-facing profile management.

	A generic view to allow self-service data removal, ready to be added to
user-facing profile management.

This app does not currently attempt to provide any sort of framework for managing opt-in or consent, because in our experience no two sites are similar enough for a generic solution.

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 django-GDPR-assist

 		
 Installation

 		
 Django settings

 		
 GDPR_PRIVACY_CLASS_NAME = 'PrivacyMeta'

 		
 GDPR_PRIVACY_INSTANCE_NAME = '_privacy_meta'

 		
 GDPR_LOG_DATABASE_NAME = 'gdpr_log'

 		
 GDPR_CAN_ANONYMISE_DATABASE = False

 		
 GDPR_LOG_ON_ANONYMISE = True

 		
 SILENCED_SYSTEM_CHECKS

 		
 Usage

 		
 Configure your models

 		
 The PrivacyMeta object

 		
 Registering automatically

 		
 Registering manually

 		
 Attributes

 		
 can_anonymise = Boolean

 		
 fields = [...]

 		
 anonymise_<field_name>(self, instance)

 		
 search_fields = [...]

 		
 qs = search(self, value)

 		
 export_fields = [...]

 		
 export_exclude = [...]

 		
 export_filename = None

 		
 data = export(self, instance)

 		
 Anonymising objects

 		
 Models

 		
 obj.anonymise()

 		
 obj.is_anonymised = BooleanField()

 		
 How anonymisation works

 		
 Anonymising related objects

 		
 Using signals

 		
 When deleting an object

 		
 Commands

 		
 Re-running deletions and anonymisations

 		
 Anonymising all personal data

 		
 The admin site

 		
 Bulk anonymisation

 		
 Personal data tool

 		
 Upgrading

 		
 Instructions

 		
 Upgrading from 1.1.0

 		
 Changelog

 		
 1.4.2, 2022-04-28

 		
 1.4.1, 2022-02-25

 		
 1.4.0, 2022-01-19

 		
 1.3.0, 2020-08-14

 		
 1.2.0, 2020-07-15

 		
 1.1.0, 2020-03-20

 		
 1.0.1, 2018-10-23

 		
 1.0.0, 2018-09-16

 		
 Contributing

 		
 Installing

 		
 Testing

 		
 Code overview

 		
 Known limitations

 		
 Roadmap

_static/up.png

_static/up-pressed.png

